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SUMMARY

Matrix-free implicit treatments are now commonly used for computing compressible flow problems:
a reduced cost per iteration and low-memory requirements are their most attractive features. This paper
explains how it is possible to preserve these features for all-speed flows, in spite of the use of a low-
Mach preconditioning matrix. The proposed approach exploits a particular property of a widely used
low-Mach preconditioner proposed by Turkel. Its efficiency is demonstrated on some steady and unsteady
applications. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The present paper is devoted to the design of efficient implicit schemes for computing all-speed
flows on unstructured grids using a preconditioned density-based flow solver. The computation of
steady flows can be considered efficient if a steady state is reached for a reduced computational
time and also if a low-memory storage is used in this process; for complex industrial applications
involving grids with very large numbers of points this latter requirement may become especially
critical. The same comment holds of course for unsteady flows, now classically computed by a
dual time-stepping approach in which a steady state with respect to the dual time must be reached
at each physical time step ideally using a low amount of both computational time and memory
storage. Designing an efficient implicit treatment means solving a multi-objective optimization

∗Correspondence to: T. Kloczko, INRIA Sophia-Antipolis, SMASH project, 2004 route des Lucioles, 06902 Sophia
Antipolis Cedex, France.

†E-mail: thibaud.kloczko@sophia.inria.fr

Copyright q 2008 John Wiley & Sons, Ltd.



494 T. KLOCZKO, C. CORRE AND A. BECCANTINI

problem in which one looks for the simultaneous minimization of the computational time involved
in the convergence to steady (physical or dual) state and of the associated storage requirement.
The minimization of computational cost can be performed by considering a two-objective problem
since the global computational cost spent to reach a steady-state is a combination of intrinsic
efficiency (i.e. the number of iterations needed to reach this steady-state) and unit cost per iteration.
Maximization of intrinsic efficiency and minimization of unit cost are usually conflicting objectives
so that the multi-objective optimization problem admits a set of optimal trade-off solutions. It
is customary to use implicit schemes to achieve fast convergence to steady state: the intrinsic
efficiency of an implicit scheme depends both on the implicit stage coupled with the chosen
explicit scheme and the solution method applied to the linear system associated with this implicit
stage. For instance, directly solved block-implicit schemes [1, 2] minimize the number of iterations
needed to reach steady state; hence, provide maximal intrinsic efficiency, at the expense of high
unit cost and memory requirement. A way to reduce unit cost and memory requirement is to
develop implicit treatments that do not rely on full flux Jacobian matrices usually introduced
when linearizing the explicit stage numerical fluxes in order to derive the implicit part of the
scheme. The simplifications that can be introduced in the explicit stage linearization are likely to
induce a loss of intrinsic efficiency which will have to be balanced through a lower unit cost, so
as to preserve the global efficiency. Following this line of idea, Pulliam and Chaussee proposed
in 1981 a diagonalized implicit treatment applied to alternate direction factorization method [3],
which was next extended to the case of preconditioned schemes within a dual-time framework
and successfully applied to the computation of unsteady low-Mach number flows on structured
grids [4–7].

So-called matrix-free implicit methods provide even lower unit cost, at the expense of a poorer
intrinsic efficiency, but with the advantage of very low-memory requirement. A well-known proto-
type of such methods is the implicit residual smoothing technique initially introduced in [8] for
the Lax-Wendroff scheme and made popular by Jameson and Baker [9]: the basic idea of the
residual smoothing technique applied to the Lax-Wendroff implicit scheme is to replace the square
of the fluxes Jacobian matrices appearing in the implicit stage with their respective spectral radius
(an operation made possible without altering the unconditional linear stability of the scheme
thanks to the definite positive character of these dissipation matrices). The linear system associated
with this simplified implicit stage is purely scalar so that it can be solved for a reduced unit
cost and with very low-memory requirements; naturally, the price to pay for this simplification
from block to scalar is a loss of intrinsic efficiency. However, this latter is usually balanced by
a low unit cost, which eventually results in a global efficiency as good as that of the original
block treatment, with the benefit of a reduced memory storage. Shortly after the introduction
of this spectral radius simplification in [8] Jameson and Baker demonstrated in [9] the same
matrix-free implicit stage could be successively coupled with the explicit Jameson, Schmidt,
Turkel’s scheme [10]: despite the lack of consistency between the explicit and implicit stage,
the resulting scheme had good stability properties and was much more efficient than a purely
explicit scheme for a modest extra-cost due to the very simple form of this matrix-free implicit
stage.

Similar ideas made their way in the context of upwind schemes: a first contribution can be
found in the works of Jameson and Turkel [11] and Jameson and Yoon [12] where the abso-
lute values of Jacobian matrices appearing in a block implicit stage are replaced with their
respective spectral radius, taking advantage here again of the definite positive character of these
dissipation matrices. It was next remarked [13] the implicit stage could be further simplified by
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introducing time increments of the flux vectors instead of products of flux Jacobian matrices
and time increments of the conserved variables and relaxing these new unknowns when solving
the resulting matrix-free implicit stage. Using simultaneously spectral radius simplification and
flux-vector increment relaxation, Löhner et al. have successfully developed a matrix-free implicit
method for solving the 3D Navier–Stokes equations on unstructured grids [14], which has been
further extended to unsteady flows [15] and all-speed flows using a low-Mach preconditioning
technique [16, 17].

Since the intrinsic efficiency of matrix-free methods is quite poor, it is absolutely crucial to
make the unit cost of these methods as low as possible in order to preserve their global efficiency.
When computing compressible flows with no preconditioning on unstructured grids, point-Jacobi
or point Gauss–Seidel methods offer such a very low cost per iterations, as well as reduced
memory requirements. When a low-Mach preconditioning matrix Pc, such as the Turkel low-
Mach preconditioning matrix [18], is introduced in the discretization, it could compromise the
matrix-free nature of the implicit stage solution. In fact, as pointed out in [19–21], Pc is such
that quantities of the form (Id +�Pc)−1, with Id the identity matrix and � a scalar coefficient,
can be simply expressed as a linear combination of vectors. In the present work, these properties
are combined with the matrix-free implicit stage developed in [14] and a solution based on point-
relaxation techniques to yield a low-cost matrix-free formulation for computing all-speed flows on
unstructured grids.

The paper is organized as follows. Section 2 describes the numerical methods used in the present
study to compute compressible flows on unstructured grids, including low-Mach flows; the last part
of this section details an inexpensive implicit treatment valid for all-speed flows, derived by taking
advantage of the preconditioning matrix Pc being idempotent. Section 3 contains a Fourier analysis
of the proposed low-cost treatment and a comparison with conventional block implicit methods
in order to get some a priori knowledge of the performances to be expected when applying the
low-cost implicit scheme to low-Mach flow computations. Section 4 is devoted to the presentation
of results obtained for such computations using the low-cost implicit scheme developed in this
work in order to demonstrate its practical efficiency.

2. NUMERICAL SCHEMES

2.1. General principles

Let us consider the three-dimensional compressible Navier–Stokes equations:

�w

�t
+∇ ·FE =∇ ·FV (1)

where w=(�,�u,�v,�w,�E)T is the vector of the conserved variable with � the density, u,
v, w the Cartesian components of the velocity vector and E the total energy, t is the physical
time, FE =( f E ,gE ,hE ) and FV =( f V ,gV ,hV ) are, respectively, the convective and viscous flux
vectors. A time-accurate solution of (1) can be efficiently computed for flows at all speed by
solving:

P−1
c

�w

��
+ �w

�t
+∇ ·FE =∇ ·FV (2)
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where � is a pseudo or dual time and Pc is a preconditioning matrix which takes, in the present
work, the form proposed by Turkel [18], detailed in Section 2.4. These governing equations can
also be expressed in the following integral form:

P−1
c

�
��

∫
�

wd�+ �
�t

∫
�

wd�+
∫

�
∇ ·(FE −FV )d�=0

where � denotes a control volume. Making use of the Green–Gauss theorem yields the alternate
integral form:

P−1
c

�
��

∫
�

wd�+ �
�t

∫
�

wd�+
∫

��
(FE −FV ) ·n=0 (3)

where �� is the boundary of cell � and n denotes the outward unit normal vector. Applying (3) on
a given cell �i of a general unstructured grid, introducing the average value w̄ of w over the cell
and decomposing the flux balance as the sum of fluxes through each face �k of cell �i leads to:

(P−1
c )i

�w̄i

��
|�i |+ �w̄i

�t
|�i | +∑

k

∫
�i,k

(FE −FV ) ·n=0 (4)

where |�i | is the volume of the i th grid cell �i and �i,k is the kth interface of this cell. The
preconditioned dual-time finite-volume approach considered in the present study drives (4) to
steady state with respect to � using a first-order approximation for the dual-time derivative (which
will vanish at steady state anyway), a second-order implicit approximation for the physical time
derivative and a numerical flux H=HE −HV to approximate the normal physical flux (FE −
FV ) ·n through a face �i,k ; moreover, since the space accuracy is limited to second order in the
present work, cell-centered values wi can be used instead of cell-averaged values without altering
the global accuracy of the method. The resulting finite-volume scheme reads:

(P−1
c )

n,m
i

�w
n,m
i

��n,m
i

+
3
2 (w

n,m
i −wn

i )− 1
2�wn−1

i

�t
+ 1

|�i |
∑
k

(HE
i,k−HV

i,k)
n,m+1Si,k =0 (5)

where m is the pseudo-iteration (on dual-time) counter, n is the time step counter, �wn,m =
wn,m+1−wn,m , �wn−1=wn−wn−1 and index ‘i,k’ on the numerical fluxes refers to the center
of the kth interface of the i th grid cell, the surface of which is denoted Si,k . Pseudo-time marching
leads to a steady solution wn+1=wn,m+1=wn,m that satisfies:

Rn+1
i =

3
2 (w

n+1
i −wn

i )− 1
2�wn−1

i

�t
+ 1

|�i |
∑
k

(HE
i,k−HV

i,k)
n+1Si,k =0 (6)

and approximates therefore at second-order in time the compressible Navier–Stokes equations (1).
The space accuracy depends on the choice of the numerical flux formula H=HE −HV . In the
present work, inviscid fluxes are computed using classical inviscid numerical flux formulae for
HE (e.g. Roe, Rusanov, AUSM+,HLL, etc.), extended to higher order using the primitive variable
reconstruction of Barth and Jespersen [22] with a slope limitation based on the technique proposed
by Venkatakrishnan [23]. Since the present work deals with the computation of all-speed flows
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using such density-based solvers, the numerical dissipation associated with each of these schemes
is corrected so as to take into account the low Mach number preconditioning appearing in (2). For
the Roe scheme first applied to system (1), the inviscid numerical flux in the direction normal to
the face �ik reads:

HE
i,k = 1

2 (F
E (wL

k ) ·ni,k+FE (wR
k ) ·ni,k)+ 1

2Q
E
i,k(w

L
k −wR

k ) (7)

where w
L/R
k are the reconstructed states, respectively, on the left and right side of the interface k.

More precisely:

wL
k =wi +�i∇wi ·r ik

where r ik denotes the vector extending from the cell center i to the center of the interface �i,k , the
gradient ∇wi is computed at the cell center i using a least-square formula applied on a prescribed
spatial support and �i is the slope limiter, computed according to Barth and Jespersen’s formula
as modified by Venkatakrishnan. Similarly:

wR
k =wo(i,k)+�o(i,k)∇wo(i,k) ·ro(i,k)k

where the index o(i,k) refers to the cell sharing the interface �i,k with cell i . The numerical
dissipation matrix QE associated with the Roe scheme is given by

QE
i,k =|(AEnx +BEny+CEnz)i,k |=|(J E⊥ )i,k | (8)

where ni,k =(nx ,ny,nz)i,k and the Jacobian matrices AE =d f E/dw, BE =dgE/dw,CE =dhE/dw
are evaluated using the Roe average [24]. If the Roe scheme is applied to the low-Mach system (2),
its dissipation matrix must take into account the preconditioning matrix Pc and is thus given by

QE
i,k =(P−1

c )i,k |(Pc J E⊥ )i,k | (9)

Similarly, while the scalar Rusanov scheme’s dissipation relies on the spectral radius of the normal
Jacobian matrix �E⊥ =�(J E⊥ ) for compressible flow problems governed by (1), this dissipation is
based on P−1

c �(Pc J E⊥ )= P−1
c �̃E⊥ and hence becomes a matrix dissipation when dealing with low

Mach number flow evolutions governed by (2). Low Mach number formulations for AUSM+ and
HLL schemes can be, respectively, found in [17, 25]. Viscous fluxes are approximated using a
linearly exact extension of the diamond method of Noh [26].

A key point in making the dual-time approach efficient is to treat (5) in an implicit way; this
means the steady solution (6) is obtained after a reduced number of pseudo-iterations by solving:

(P−1
c )

n,m
i

�w
n,m
i

��n,m
i

+ 3

2

�w
n,m
i

�t
+ 1

|�i |
∑
k

(�H(i)
i,k)

n,mSi,k =−Rn,m
i (10)

where �(H(i))n,m =(H(i))n,m+1−(H(i))n,m and H(i) =HE(i)−HV (i) denotes the numerical
flux formula retained in the implicit stage, which is not necessarily the same than the one used
in the explicit stage R. Indeed, since the numerical approach used to compute the left-hand side
(LHS) of Equation (10) does not affect the (space and time) accuracy of the method (provided that
the convergence on m is reached), the numerical schemes used to compute the LHS (10) are not
necessarily consistent with the ones used to compute the right-hand side (RHS), which determine
the space accuracy of the discrete solution. The basic motivation for a choice of a numerical flux
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H(i) simpler than its explicit counterpart H lies in an expected reduction of the computational
cost spent in solving at each physical time step the linear algebraic system associated with the
implicit stage. This unit cost reduction is achieved at the expense of the intrinsic efficiency which
is clearly optimal when the implicit stage remains consistent with the explicit one (fully implicit
scheme). For instance, it is now very common practice to retain in the implicit stage a first-order
expression of the numerical flux formula (Roe, Rusanov, AUSM+, HLL, etc.) used at second or
third order in the explicit stage. When performed on structured grids, such a choice simplifies the
algebraic systems associated with the implicit stage from pentadiagonal to tridiagonal (see [27] for
instance) thus offering a significant reduction of the unit computational cost. At the same time the
implicit first-order/explicit third-order combination provides a poorer damping of the error than
a fully implicit third-order scheme [28]. However, the unit cost reduction offered by the implicit
stage simplification is such that it largely balances the loss of efficient intrinsic efficiency and
such a non-consistent implicit strategy is now widely adopted (see, for instance, codes such as
OVERFLOW or CFL3D). Further simplifications of the implicit stage can be performed leading
to so-called matrix-free implicit schemes, as developed in particular by Löhner and co-workers
for computing compressible and low-Mach number flows on unstructured grids [14, 15, 17] on the
basis of previous implicit stage simplifications proposed in [12, 13]. The next section is devoted
to the derivation of such a simplified low-cost implicit stage for the low-Mach Navier–Stokes
equations, and to the description of solution methods preserving its reduced computational cost.

2.2. Unstructured grid low-cost implicit formulation

2.2.1. Simplified inviscid implicit stage. The early proposal of Jameson and Yoon [12] can be
reinterpreted as choosing the first-order Rusanov numerical flux for the inviscid numerical flux
HE(i) appearing in the implicit stage, whatever the higher-order inviscid numerical flux formula
used in the explicit stage; namely, (10) is applied for all-speed flow computations with:

H
E(i)
i,k = 1

2 (F
E
i ·ni,k+FE

o(i,k) ·ni,k)+ 1
2 (P

−1
c �(Pc J

E⊥ ))i,k(wi −wo(i,k)) (11)

where FE
i =( f E (wi ),gE (wi ),hE (wi )) and similarly for FE

o(i,k) computed using the state at the
center of cell o(i,k); meanwhile, the higher-order numerical flux used in the explicit stage would
be for instance the Roe-MUSCL formula defined by (7). The linearization of the time increment
of this implicit numerical flux leads to the following approximation:

(�HE(i))
n,m
i,k = 1

2 ((�FE
i )n,m ·ni,k+(�FE

o(i,k))
n,m ·ni,k)+ 1

2 (P
−1
c �̃E⊥)

n,m
i,k (�w

n,m
i −�w

n,m
o(i,k))

with the preconditioned inviscid spectral radius defined as �̃E⊥ =�(Pc J E⊥ ). The resulting contribution
of the inviscid numerical flux balance to the LHS of (10) reads:

∑
k

(�HE(i)
i,k )n,mSi,k = 1

2

[∑
k

(�FE
o(i,k))

n,m ·ni,k+∑
k

(P−1
c �̃E⊥)

n,m
i,k (�w

n,m
i −�w

n,m
o(i,k))

]
Si,k (12)

since
∑

k(�FE
i )n,m ·ni,k Si,k =(�FE

i )n,m ·(∑k ni,k Si,k)=0.

2.2.2. Simplified viscous implicit stage. For the sake of presentation simplicity, the derivation of
the viscous implicit stage is performed in the 2D case. The time increment of the physical viscous
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flux normal to a face can be linearized as follows:

�(FV )n,m ·n = �( f V (w,∇w))n,mnx +�(gV (w,∇w))n,mny

+[(AV
0 )n,m�wn,m+(AV

1 )n,m�wn,m
x +(AV

2 )n,m�wn,m
y ]nx

+[(BV
0 )n,m�wn,m+(BV

1 )n,m�wn,m
x +(BV

2 )n,m�wn,m
y ]ny

where the viscous Jacobian matrices have been introduced: AV
0 =� f V /�w, AV

1 =� f V /�wx , AV
2 =

� f V /�wy and similarly BV
0 =�gV /�w, BV

1 =�gV /�wx , BV
2 =�gV /�wy . The partial derivatives

wx , wy with respect to the x and y space directions are related to the partial derivatives w⊥, w‖
with respect to the (local) normal and tangential directions relative to a face by the equalities wx =
w⊥nx −w‖ny and wy =w⊥ny+w‖nx . Inserting these relationships into the above flux linearization
yields:

�(FV )n,m ·n=(J V0 )n,m ·�wn,m+(J V⊥ )n,m ·�w
n,m
⊥ +(J V‖ )n,m ·�w

n,m
‖

where J V0 =[AV
0 nx+BV

0 ny], J V⊥ =[AV
1 n

2
x+BV

2 n
2
y+(AV

2 +BV
1 )nxny] and J‖ =[AV

2 n
2
x−BV

1 n
2
y+

(BV
2 −AV

1 )nxny]. This highly expensive linearization is drastically simplified by retaining only
the contributions involving a positive-definite matrix coefficient, namely:

�(FV )n,m ·n≈(J V (i)
⊥ )n,m ·�w

n,m
⊥

with J V (i)
⊥ =[AV

1 n
2
x +BV

2 n
2
y] in the 2D case and J V (i)

⊥ =[AV
1 n

2
x +BV

2 n
2
y+CV

3 n
2
z ] in the 3D case,

where CV
3 =�hV /�wz . Furthermore, since J V (i)

⊥ is a positive-definite matrix it can be replaced

by its spectral radius �V (i)
⊥ without compromising the linear stability of the implicit stage. The

normal derivative of w with respect to a face �ik is computed with a simple 2-point formula using
the difference between the variable in the i-cell and its kth neighbor, divided by the sum of the
distances between the involved cell centers and the interface [d(i, (i,k))+d((i,k),o(i,k))]:

�(w
n,m
⊥ )i,k = �wo(i,k)−�wi

d(i, (i,k))+d((i,k),o(i,k))

The resulting contribution of the viscous numerical flux balance to the LHS of (10) reads:∑
k

(�HV (i)
i,k )n,mSi,k =−∑

k
(�̃V (i)

⊥ )
n,m
i,k (�w

n,m
i −�w

n,m
o(i,k))Si,k (13)

with (�̃V (i)
⊥ )i,k =�V (i)

⊥ /(d(i, (i,k))+d((i,k),o(i,k))).

2.2.3. Simplified full implicit stage. Inserting (12) and (13) into the LHS of (10) leads to a
simplified implicit stage of the form:

Dn,m
i �w

n,m
i + 1

2|�i |
∑
k

(�FE
o(i,k))

n,m ·ni,k Si,k−∑
k
Cn,m
i,k �w

n,m
o(i,k) =−Rn,m

i (14)
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with

Cn,m
i,k = 1

|�i |
(
QV + 1

2
QE

)n,m

i,k
Si,k

Dn,m
i =

(
P−1
c

��

)n,m

i
+ 3

2�t
+∑

k
Cn,m
i,k

(15)

and the coefficients QV and QE are given by

QE = P−1
c �(Pc J

E⊥ )= P−1
c �̃E⊥, QV = �̃V (i)

⊥ I d= �(J V (i)
⊥ )

d(i, (i,k))+d((i,k),o(i,k))
I d (16)

2.3. Solution methods for the implicit stage

2.3.1. Direct solver. The non-linear implicit stage (14) contains dual-time increments for both
the vector of conserved variables �wn,m and the inviscid physical fluxes. Introducing the inviscid
Jacobians allows to express these latter in terms of �wn,m and to turn (14) into the following
linear system:

Dn,m
i �w

n,m
i −∑

k
(Ca)

n,m
i,k �w

n,m
o(i,k) =−Rn,m

i (17)

with

(Ca)
n,m
i,k = Si,k

|�i |

[(
QV + 1

2
QE

)n,m

i,k
− 1

2
(J E⊥ )

n,m
i,k

]
=Cn,m

i,k − 1

2

Si,k
|�i | (J

E⊥ )
n,m
i,k

and the coefficient Dn,m
i of �w

n,m
i is unchanged with respect to (15)–(16). The linear system (17)

can then be solved exactly, using for instance a GMRES approach, in which case the implicit
scheme (17) will be referred to as a direct solver. Alternatively, an approximate solution of (17)
can be iteratively obtained thanks to some kind of point-relaxation techniques; other standard
approaches such as approximation factorizations or line-relaxation methods are not considered in
this work since not directly adapted to the case of unstructured grid computations.

2.3.2. Relaxation methods. Point Jacobi: Applying a Point-Jacobi-relaxation technique to solve
(17) yields:

�w
(0)
i =0

l=0, p−1

�w
(l+1)
i =(Dn,m

i )−1
(

−Rn,m
i +∑

k
(Ca)

n,m
i,k �w

(l)
o(i,k)

)

wn+1
i =wn

i +�w
(p)
i
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As pointed out by Sharov and Nakahashi [13], a better starting point for deriving the Point-Jacobi
implicit stage is (14), which leads to:

�w
(0)
i =0

l=0, p−1

�w
(l+1)
i =(Dn,m

i )−1
(

−Rn,m
i − 1

2|�i |
∑
k

(�FE
o(i,k))

(l) ·ni,k Si,k+∑
k
Cn,m
i,k �w

(l)
o(i,k)

)
(18)

wn+1
i =wn

i +�w
(p)
i

When dealing with compressible flow problems (Pc= I d), coefficients Dn,m
i and Cn,m

i are purely
scalar so that the implicit treatment (18) involves strictly no matrix–vector product: such a matrix-
free implicit stage offers a very low-unit cost, which generally makes up for the loss of intrinsic
efficiency induced by the spectral radius simplifications. It will be explained in Section 2.4 how
such a low cost can be preserved when the low-Mach preconditioning is switched on, i.e. with Pc
a full matrix.

Symmetric Gauss–Seidel: The Point-Jacobi algorithm can be improved using a Gauss–Seidel-type
procedure in which the unknown increments �wi evaluated during a sweep are immediately used
to compute the next ones; moreover, a reverse sweep can be performed leading to the symmetric
Gauss–Seidel (SGS) relaxation procedure. The unstructured grid SGS methodology relies on two
(forward and backward) sweeps using mesh ordering and thus requires the definition of sets of
interfaces L(i) and U (i) so as to determine the terms to be relaxed at each step of the sweeps.
Let k be an interface of a mesh cell i , the sets of interfaces L(i) and U (i) can be defined as
follows:

k∈L(i)⇔o(i,k)<i, k∈U (i)⇔o(i,k)>i

where it is recalled that the index o(i,k) refers to the cell sharing the interface k with cell i . Using
this definition, the SGS algorithm reads:

�w
(0)
i =0

l=0, p−1

Forward sweep:

�w
(∗)
i = (Dn,m

i )−1

(
−Rn,m

i − 1

2|�i |
∑

k∈L(i)
(�FE

o(i,k))
(∗) ·ni,k Si,k+ ∑

k∈L(i)
Cn,m
i,k �w

(∗)
o(i,k)

− 1

2|�i |
∑

k∈U (i)

(
�FE

o(i,k)

)(l) ·ni,k Si,k+ ∑
k∈U (i)

Cn,m
i,k �w

(l)
o(i,k)

)
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Backward sweep:

�w
(l+1)
i = (Dn,m

i )−1

(
−Rn,m

i − 1

2|�i |
∑

k∈L(i)
(�FE

o(i,k))
(∗) ·ni,k Si,k+ ∑

k∈L(i)
Cn,m
i,k �w

(∗)
o(i,k)

− 1

2|�i |
∑

k∈U (i)
(�FE

o(i,k))
(l+1) ·ni,k Si,k+ ∑

k∈U (i)
Cn,m
i,k �w

(l+1)
o(i,k)

)

wn+1
i =wn

i +�w
(p)
i (19)

where the exponent ∗ denotes provisional values stored after the forward step. It is clear that the
above algorithm does not add complexity to the method since, in the manner of the PJ procedure,
it only requires the inversion of the diagonal coefficient.

2.4. Low-cost treatment for all-speed flows

Let us first turn our attention to the Point-Jacobi procedure (18) and explain how each sub-iteration
can be evaluated for a reduced cost even when the low-Mach number preconditioning matrix Pc
appears in the formulation of the implicit stage—the technique detailed hereafter can be similarly
applied to the SGS procedure and only the final formulation will be provided in that case. Each
sub-iteration of the PJ procedure requires to compute:

�w
(l+1)
i =(Dn,m

i )−1
(

−Rn,m
i − 1

2|�i |
∑
k

(�FE
o(i,k))

(l) ·ni,k Si,k+∑
k
Cn,m
i,k �w

(l)
o(i,k)

)
with blocks Dn,m

i and Cn,m
i,k defined by (15)–(16). Under the assumption of a systematic evaluation

of the preconditioning matrix P−1
c at the cell center i , the above relationship can also be recast

under the form:

�w
(l+1)
i =(Dn,m

i )−1RHSc+(Dn,m
i )−1(P−1

c )
n,m
i RHSd (20)

where the so-called consistent and dissipative parts of the RHS read:

RHSc=−Rn,m
i − 1

2|�i |
∑
k

(�FE
o(i,k))

(l) ·ni,k Si,k+ 1

|�i |
∑
k

�̃V (i)
⊥ Si,k�w

(l)
o(i,k)

RHSd = 1

2|�i |
∑
k

�̃E⊥Si,k�w
(l)
o(i,k)

(21)

while coefficient Dn,m
i is now expressed as

Dn,m
i =an,m

i (P−1
c )

n,m
i +bn,m

i Id (22)
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with the scalar coefficients an,m
i , bn,m

i defined by

an,m
i = 1

��n,m
i

+∑
k

Si,k
2|�i | (�̃

E⊥)
n,m
i , bn,m

i = 3

2�t
+∑

k

Si,k
|�i | (�̃

V (i)
⊥ )

n,m
i

In the case of the preconditioned steady Euler equations, Dn,m
i reduces to an,m

i (P−1
c )

n,m
i so that

(20) simplifies into:

�w
(l+1)
i = 1

an,m
i

[(Pc)n,m
i RHSc+RHSd ]

The remaining extra-cost with respect to the compressible case lies in the computation of the
matrix–vector product (Pc)

n,m
i RHSc, which can be simplified by taking advantage of some specific

properties of the Turkel low-Mach preconditioning matrix [18] considered in the present work,
which have already been pointed out in [20, 21]. The Turkel low-Mach preconditioning has been
derived from the Euler equations expressed in entropic variables V T=(p,u,v, S) (pressure, velocity
components and entropy) and, when applied to this specific form of the Euler equations, takes
the form Pe= Id +(�2−1)Qe where Qe=Diag(1,0,0,0); the preconditioning parameter � is a
function of the local Mach number that will be detailed later on. It must be noted that matrix Qe
is idempotent, i.e. such that Q2

e =Qe. The preconditioning matrix Pc appearing in (2) is related
to Pe through the relationship:

Pc=
(

�w

�V

)
·Pe ·

(
�V
�w

)
so that

Pc= Id +(�2−1)Qc (23)

with Qc=(�w/�V ) ·Qe ·(�V /�w) an idempotent matrix. An explicit expression for Qc in the case
where (2) is complemented with a perfect gas equation of state is provided in [19, 29]:

Qc= �−1

c2

⎛⎜⎜⎜⎜⎜⎝
q2= 1

2 (u
2+v2) −u −v 1

uq2 −u2 −uv u

vq2 −uv −v2 v

Hq2 −uH −vH H

⎞⎟⎟⎟⎟⎟⎠= �−1

c2

⎛⎜⎜⎜⎜⎝
1

u

v

H

⎞⎟⎟⎟⎟⎠(q2,−u,−v,1) (24)

where c is the speed of sound, H the total enthalpy and � the ratio of specific heats.
As pointed out by Turkel, the matrix–vector product involving Pc or Qc can be performed by

using definition (24), namely,

Qc ·X = �−1

c2
(q2X (1)−uX (2)−vX (3)+X (4)) ·(1,u,v,H)T

with X (i) the i th component of vector X . Therefore a sub-iteration of the Point-Jacobi process
in the case of the steady Euler equations with low-Mach preconditioning can be computed at a
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reduced cost using the following expression:

�w
(l+1)
i = 1

an,m
i

[RHSc+RHSd ]+
[
�−1

ac2

]n,m

i
((q2)n,m

i RHS(1)
c

−un,m
i RHS(2)

c −v
n,m
i RHS(3)

c +RHS(4)
c ) ·

⎛⎜⎜⎜⎜⎜⎝
1

u

v

H

⎞⎟⎟⎟⎟⎟⎠
n,m

i

As soon as bn,m
i is different from zero in the definition of Dn,m

i (unsteady problems or/and viscous
flows), the evaluation of the matrix coefficients (Dn,m

i )−1 and (Dn,m
i )−1(P−1

c )
n,m
i in expression

(20) seems to become more involved. In fact, taking advantage of the property Q2
c =Qc it is

possible to compute in an explicit way D−1 as well as D−1P−1
c . Indeed, if Dn,m

i is computed
using the approximate formula (22), it is easy to show its inverse is given by

(Dn,m
i )−1=

[
1

a+b

(
Id + a(�2−1)

a+b�2
Qc

)]n,m

i

(25)

Now, since P−1
c = I d+(1/�2−1)Qc, an immediate calculation yields:

(Dn,m
i )−1(P−1

c )
n,m
i =

[
1

a+b

(
Id − b(�2−1)

a+b�2
Qc

)]n,m

i

(26)

Inserting (25) and (26) into (20) leads to the following simplified formulation of a Point-Jacobi
sub-iteration in the case of all-speed flows:

�w
(l+1)
i = 1

(a+b)n,m
i

[RHSc+RHSd ]+
[

(�2−1)Qc

(a+b)(a+b�2)

]n,m

i

(an,m
i RHSc−bn,m

i RHSd)

Here again, the remaining matrix–vector product involves the Turkel preconditioning matrix and
can be easily computed using (24) to yield the following simple, hence low-cost, formulation of
the preconditioned Point-Jacobi sub-iteration:

�w
(l+1)
i = 1

(a+b)n,m
i

[RHSc+RHSd ]+��(l)
i

⎛⎜⎜⎜⎜⎜⎝
1

u

v

H

⎞⎟⎟⎟⎟⎟⎠
n,m

i

(27)
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with

��(l)
i =

[
(�2−1)

(a+b)(a+b�2)

�−1

c2

]n,m

i

×[(q2)n,m
i R̃HS

(1)−un,m
i R̃HS

(2)−v
n,m
i R̃HS

(3)+R̃HS
(4)]

R̃HS = an,m
i RHSc−bn,m

i RHSd

(28)

Similar simplifications can be performed when using the SGS point-relaxation technique so as to
yield for the forward sweep:

�w
(∗)
i = 1

(a+b)n,m
i

[RHSF
c +RHSF

d ]+��(∗)
i

⎛⎜⎜⎜⎜⎝
1

u

v

H

⎞⎟⎟⎟⎟⎠
n,m

i

(29)

with

RHSF
c = −Rn,m

i − 1

2|�i |
∑

k∈L(i)
(�FE

o(i,k))
(∗) ·ni,k Si,k+ 1

|�i |
∑

k∈L(i)
�̃V (i)

⊥ Si,k�w
(∗)
o(i,k)

− 1

2|�i |
∑

k∈U (i)
(�FE

o(i,k))
(l) ·ni,k Si,k+ 1

|�i |
∑

k∈U (i)
�̃V (i)

⊥ Si,k�w
(l)
o(i,k)

RHSF
d = 1

2|�i |
∑

k∈L(i)
�̃E⊥Si,k�w

(∗)
o(i,k)+

1

2|�i |
∑

k∈U (i)
�̃E⊥Si,k�w

(l)
o(i,k)

and

��(∗)
i =

[
(�2−1)

(a+b)(a+b�2)

�−1

c2

]n,m

i

[(q2)n,m
i R̃HS

(1)
F −un,m

i R̃HS
(2)
F −v

n,m
i R̃HS

(3)
F +R̃HS

(4)
F ]

R̃HSF =an,m
i RHSF

c −bn,m
i RHSF

d

A similar inexpensive expression can be derived for the backward sweep. It must be emphasized
at this stage that the simplified expressions (27) and (29) are strictly equivalent to the original
formulations (18) and (19) when applied to linear or linearized problems. The simplified formula-
tions differ from the original ones for non-linear problems because they rely on a single evaluation
of Pc at the cell center i instead of several evaluations both at the cell center and at the faces
of the control volume for the original formulations. The global efficiency of these preconditioned
matrix-free formulations (27) and (29) will be practically assessed in Section 4 by computing
low-Mach number flows with these methods. Before proceeding to this application of the proposed
low-cost implicit treatments, a von Neumann analysis is performed in the next section to obtain
an a priori estimate of their efficiency.
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3. IMPLICIT TREATMENT ANALYSIS

The stability and intrinsic efficiency properties of the simplified implicit scheme (17), approxi-
mately solved using a PJ or SGS procedure, are now analyzed through the study of its associated
amplification factor. In order to perform such a von Neumann analysis, schemes (17)–(19) are first
expressed in the case of the 2D linearized preconditioned Euler equations solved on a uniform
Cartesian grid. General formulae are then derived for the amplification factor and comparisons are
performed between the low-unit cost implicit solver and an expensive but intrinsically efficient
block implicit scheme.

3.1. Cartesian grid implicit formulations

Let us consider the 2D linearized preconditioned Euler equations:

P−1
c wt +AE (w0)wx +BE (w0)wy =0 (30)

where the inviscid Jacobian matrices are computed for a given physical state w0. System (30) is
discretized on a uniform Cartesian grid (xi = i�x, y j = j�y) with constant steps �x and �y. For the
sake of clarity, the analysis is performed in the specific case of a Roe-type explicit stage, extended
to third-order using variable reconstruction. It was checked that using a AUSM+, Rusanov or HLL
explicit stage leads to similar conclusions. The 2D finite difference equivalent of (14) reads:

H ·�wn
i, j =−K·wn

i, j (31)

with H and K, respectively, the implicit and explicit difference operator. In the specific case of
a third-order Roe-type explicit stage, the operator K takes the form:

K= ȦE (I − 1
6 )�1�1+ Ḃ E (I − 1

6 )�2�2+ 1
12 P

−1
c |Pc ȦE |�41+ 1

12 P
−1
c |Pc ḂE |�42 (32)

where difference and average operators acting in each grid direction have been introduced:

(�1�)i+1/2, j =�i+1, j −�i, j , (�2�)i, j+1/2=�i, j+1−�i, j

(�1�)i+1/2, j = 1
2 (�i+1, j +�i, j ), (�2�)i, j+1/2= 1

2 (�i, j+1+�i, j )

and with ȦE =�t/�x ·AE , Ḃ E =�t/�y ·BE . The implicit operator H takes the general form:

H=[P−1
c + ȦE�1�1+ Ḃ E�2�2− 1

2 Q̇
E
1 �21− 1

2 Q̇
E
2 �22]n (33)

where Q̇E
1 =�t/�x ·QE

1 , Q̇
E
2 =�t/�y ·QE

2 and the dissipation matrices QE
1 , Q

E
2 can be evaluated

using expression (9) or (16) leading either to a classical implicit block scheme (see, for instance,
[7, 27, 28]) or to a matrix-free scheme. The implicit operator can also be expressed as:

H=D− Ȧ+E−
1 − Ḃ+E−

2 + Ȧ−E+
1 + Ḃ−E+

2 (34)

with

D= P−1
c + Q̇E

1 + Q̇E
2 , Ȧ± = 1

2 ( Ȧ
E ± Q̇E

1 ), Ḃ± = 1
2 (Ḃ

E ± Q̇E
2 ) (35)
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and the shift operators defined by E±
1 ·�i, j =�i±1, j , E

±
2 ·�i, j =�i, j±1. The linear system associated

with (31) can be solved directly or using an iterative-relaxation procedure (Point Jacobi or SGS
described in the previous section). A general iterative scheme reads:

�w
(0)
i, j = 0

l = 0, p−1

� = 1,N

H� ·�w
(lN+�)
i, j = −K·wn

i, j −(H−H�) ·�w
(lN−�−1)
i, j

�wn
i, j = �w

(pN )
i, j

(36)

where H� is a difference operator that depends on the specific choice of the iterative method. The
Point-Jacobi-relaxation procedure described by (18) in the general case corresponds in this linear
analysis on a Cartesian grid to a single difference operator:

HPJ
1 =D

while the SGS method described by (19) in the general case is simply expressed using the following
operators (N =2):

HSGS
1 =D− Ȧ+E−

1 − Ḃ+E−
2 , HSGS

2 =D+ Ȧ−E+
1 + Ḃ−E+

2

3.2. Von Neumann analysis

In the framework of a von Neumann analysis, the stability and efficiency properties of the direct
solver (31) or iterative solver (36) are analyzed by computing the spectral radius of the amplification
matrix associated with each implicit scheme. This amplification matrix is obtained from a Fourier
transform of (31) or (36). For the direct solver, a Fourier transform of (31) yields:

H ·�ŵn
i, j =−K ·ŵn

i, j (37)

where ŵ is the transformed function of wn and H , K denote, respectively, the transformed functions
of H, K which are easily computed from (32) and (33). Introducing the reduced wave numbers
	 and 
 associated, respectively, with the x and y directions and denoting s1=sin(	), s2=sin(
),
z1= 1

2 (1−cos(	)), z2= 1
2 (1−cos(
)), symbols H and K can be cast in the compact form:

K = 4
3 P

−1
c |Pc ȦE |z21+ 4

3 P
−1
c |Pc ḂE |z21+ i[(I + 2

3 z1)s1 Ȧ
E +(I + 2

3 z2)s2 Ḃ
E ] (38)

H = P−1
c + Q̇E

1 z1+ Q̇E
2 z2+ i( ȦE s1+ Ḃ E s2) (39)

Since the amplification matrix is such that ŵn+1(	,
)=G(	,
) ·ŵn(	,
), the amplification matrix
G∗ associated with the direct solver (31) reads:

G∗ = Id −H−1 ·K (40)

with H , K given by (38), (39).
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For the iterative solver, a Fourier transform of (36) yields the following form for the amplification
matrix Gp:

Gp = G∗+V p(Id −G∗)

V =
N∏

�=1
(Id −H−1

� ·H)
(41)

with H� the Fourier transform of the operator H�. For the PJ method, N =1 and H1=D while
N =2 and H1=D− Ȧ+e−i	− Ḃ+e−i
, H2=D+ Ȧ−ei	+ Ḃ−ei
 for the SGS approach.
The amplification matrices G∗ and Gp are functions of the reduced wave numbers 	, 
 as

well as of a limited number of numerical and physical parameters. The key numerical param-
eters are the Cournant–Friedrichs–Lewy (CFL) number and the preconditioning parameter �,
whereas the Mach number M , speed of sound c and velocity components ratio �=v/u form
the key physical parameters of the study. The CFL number is the ratio of the numerical time
step �t to the characteristic time step associated with the physical problem and can be inter-
preted as the acceleration factor allowed by the implicit time integration; for the linearized Euler
equations, this characteristic time step is defined by �t E =min(�x,�y)/(c(M+1)). The precon-
ditioning parameter is prescribed as �=1 when no preconditioning is applied and �=M when
looking for a steady solution of the preconditioned linearized Euler equations; other definitions,
adapted to viscous or/and unsteady flows will be given and used in the section devoted to the
applications.

Scheme (31) will be stable if and only if the modulus of �(G∗), the spectral radius of the
amplification matrix G∗, known also as the amplification factor, is lower than unity for all wave
numbers; similarly, (36) is stable iff |�(Gp)|�1 ∀(	,
). Since it was observed that the amplification
factor depends mainly on the wave numbers (	,
), Mach number M (through the definition of �)
and CFL, two types of analysis will be considered hereafter:

(i) local analysis: for a given set of parameters (CFL,M), �(G) is computed with a sweep on
the wave numbers space; if there exists at least a couple (	,
) such that �(G)>1 then the
scheme is unstable for the considered parameters. Besides, achieving the smallest possible
value of �(G) for all couple (	,
) ensures a fast damping of the error hence a convergence
to steady state for a limited number of time iterations, a desirable property also referred to
as high intrinsic efficiency.

(ii) global analysis: the maximum value of the amplification factor is defined as �max(M,CFL)=
max(	,
)∈[0,�]2[�(G(	,
,M,CFL))]. It is computed for each combination of Mach and CFL
numbers, which enables to draw the stability map of the scheme in the (CFL,M) plane
and to detect for which conditions �(G)>1. The mean value of the amplification factor is
defined as �ave(M,CFL)=(1/�2)

∫ �
0

∫ �
0 �(	,
;M,CFL)d	d
. When the scheme is stable,

this mean value provides a quantitative information on the error damping provided by the
scheme: the lower the value of �ave(M,CFL), the better the intrinsic efficiency of the
numerical treatment.

The mean value �ave(M,CFL) for the direct solver (31) with �=1 is plotted in Figure 1: the
choice (9) for Q̇E

1 , Q̇
E
2 corresponds to the block scheme while choosing (16) yields the matrix-free

scheme. Note the maximum value �max(M,CFL) is not plotted here since always equal to unity,
which means that the block and matrix-free schemes are unconditionally stable when directly
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Figure 1. Mean value �ave(M,CFL) for the unpreconditioned schemes solved directly. Left: block
scheme. Right: matrix-free scheme.
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Figure 2. Mean value �ave(M,CFL) for the preconditioned schemes solved directly. Left: block
scheme. Right: matrix-free scheme.

solved. Clearly, both schemes yield poor efficiency properties when M goes to zero, which was
expected since no preconditioning is applied. Moreover, the scalar implicit dissipation term retained
for the matrix-free scheme severely impacts the efficiency of this scheme for all the flow regimes:
an asymptotic value of the average error damping is rapidly reached when increasing the CFL
number and this value remains well above that provided by the block scheme which offers a much
better intrinsic efficiency—at the expense however of a larger unit cost. The lack of efficiency
observed in the low-Mach region can be circumvented using the low-Mach preconditioning as
shown in Figure 2; note the preconditioned block and matrix-free schemes remain unconditionally

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:493–526
DOI: 10.1002/fld



510 T. KLOCZKO, C. CORRE AND A. BECCANTINI

stable when directly solved. The low-Mach preconditioning (�=M) drastically lowers the mean
value �ave(M,CFL) for both schemes in the low-Mach region with respect to the previous non-
preconditioned case (�=1). In the case of the matrix-free scheme, the positive impact of this
preconditioning on intrinsic efficiency is especially strong in the quasi-incompressible regime
because choosing �=M makes the condition number of system (30) close to unity: the difference
between all the eigenvalues is then smaller than for compressible flows and, consequently, the
spectral radius simplification becomes less penalizing.

Since the intrinsic efficiency offered by the directly solved matrix-free scheme remains signif-
icantly lower than the one provided by the directly solved block scheme, global efficiency for
the matrix-free scheme can only be achieved by reducing as much as possible the unit cost of
the approach. In practice, the matrix-free scheme is solved using a PJ or SGS iterative technique
and the treatment previously described in Section 2.4 aims precisely at achieving such a low
cost. The present Von Neumann analysis is used to determine a priori the optimal number of
sweeps required by the PJ and SGS matrix-free schemes summarized by formulae (27) and (29).
Since the amplification factor of these implicit schemes tends to the ideal amplification factor
associated with the direct solver (31) when the number of inner iterations p goes to infinity,
the idea is to find the minimal value of p that ensures both the stability of the iterative solvers
and an efficiency close enough to the ideal one. In Figure 3, the mean and maximum value of
the amplification factor for both techniques are compared with the direct solver at M=10−3

and CFL=106. As far as efficiency is concerned, 20 inner iterations are sufficient for the SGS
scheme to recover the performances of the direct solver, whereas the PJ method requires at least
50 inner iterations to approach the same efficiency. Moreover, the SGS scheme is unconditionally
stable, whereas the PJ approach suffers from instability for p<100. A local analysis, not presented
here for the sake of conciseness, reveals that the PJ instability arises for very low-frequency
modes that can be captured on very fine grids only. In practice, the amount of sub-iterations used
for the PJ scheme depends on the mesh size: it will vary between 30 and 120 in the numer-
ical experiments of the next section. For these same applications, the SGS matrix-free scheme
will be systematically used with at most 50 sub-iterations as suggested by the present Fourier
analysis.
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Figure 3. Impact of the amount of inner-iterations on the efficiency and the stability of PJ and
SGS algorithms coupled with the matrix-free implicit stage at M=10−3 and CFL=106. Left: mean

value �ave. Right: maximum value �max.
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4. APPLICATIONS

The Fourier analysis presented in the previous section demonstrates that a steady solution can be
obtained in a stable way for all-speed flows using a matrix-free preconditioned scheme solved with
a point-relaxation technique. The proposed matrix-free approach will be globally more efficient
than a conventional block technique provided its cost per iteration is low enough to make up
for its lack of intrinsic efficiency, made obvious in Figure 2. Another measure of efficiency, not
emphasized until now, is the memory requirement associated with the numerical scheme. The
present section aims at assessing the cost per iteration and the related global cost as well as the
storage cost for the block and matrix-free preconditioned schemes by applying these schemes to
a series of steady and unsteady low-Mach number flows.

4.1. Inviscid steady flow in a sine-bump channel

4.1.1. Description of the 2D case. The inviscid flow of a perfect gas (�=1.4) in a channel is
computed for flow regimes ranging from supersonic down to nearly incompressible. The channel
is enclosed in a rectangular domain (x, y)∈[0;4]×[0;1], with a straight upper wall and a curved
lower wall, shaped as a sine bump described by

x<1, y=0

1�x�3, y=0.1 (1−cos[(x−1)�])
x>3, y=0

The flow is computed using a series of three unstructured grids, containing, respectively 3468, 7898
and 14 104 triangular elements for the coarse, medium and fine one. The inlet Mach number succes-
sively takes the values M∞ =2, M∞ =0.6, M∞ =0.5, M∞ =0.1 and M∞ =10−4. For M∞ = 2,
supersonic boundary conditions are considered: density, velocity and pressure are imposed at the
inlet while, at the outlet, the same quantities are extrapolated from the interior domain. For all
the other inlet Mach numbers, subsonic conditions are considered: total enthalpy, entropy and
flow angle are imposed at the inlet while pressure is extrapolated from the interior domain; static
pressure is imposed at the outlet while density and velocity components are extrapolated from the
interior domain. No-slip conditions are imposed on the upper and lower wall of the domain. The
preconditioned Euler equations, with �=min(1,M∞) (see also the Appendix for a summary of
the choice of the preconditioning parameter), are solved using:

(i) the Point-Jacobi matrix-free scheme (27) with � inner iterations, MF-PJ(�);
(ii) the SGS matrix-free scheme (29) with � inner iterations, MF-SGS(�);
(iii) the block scheme defined by (17) with a solution of the block implicit stage based on a

Newton–Krylov algorithm (GMRES with ILUT preconditioner, Krylov space dimension
equal to 50). The Newton–Krylov iterative algorithm denoted NK(�) is run till the residual
is lower than 10−�.

While a Roe-type explicit stage was considered up to now in the description and analysis of the
numerical treatments under study (for the sake of simplicity in their description), the AUSM+(P)
scheme [25] with second-order limited reconstruction on the primitive variables will be used
throughout this section. Consequently, the dissipation matrices QE

1 , Q
E
2 appearing in the block

implicit stage solved by NK(�) are no longer given by (9) but have been recomputed from the
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expression of the AUSM+(P) numerical flux formula. Meanwhile, the implicit stages associated
with MF-PJ(�) or MF-SGS(�) remain unaffected by this change of explicit stage: only Rn,m

i
is modified in (20), leaving (27) and (29) formally unchanged. Block and matrix-free implicit
treatments will be systematically compared, with varying flow regime and grid refinement, from
the viewpoint of both global efficiency and memory requirements, that is minimal CPU time and
storage should be consumed to reach steady state. The steady solution will not be analyzed since
it depends only on the standard AUSM+(P) explicit stage and is therefore the same whatever the
implicit stage solution.

4.1.2. Numerical results for the 2D case. The elements of comparison between block and matrix-
free schemes are summarized in Tables I–V, organized as follows: each table corresponds to a
given Mach number; for each Mach number, the coarse-, medium- and fine-grid computations are
referenced, respectively, as mesh 1, 2 and 3. Iterations denote the number of iterations needed
to reach steady state with machine accuracy, which describes intrinsic efficiency. CPU denotes
the CPU time consumed to reach this steady state, which corresponds to global efficiency. RCPI
represents the relative cost per iteration for each method; it is computed for a given Mach number

Table I. 2D sine-bump channel. Supersonic case: M=2.

Mesh Method Iterations CPU RCPI

1 MF-PJ(30) 730 65 0.8
MF-SGS(10) 670 76 1
NK(3) 100 180 16

2 MF-PJ(40) 680 272 1
MF-SGS(20) 690 275 1
NK(3) 215 1180 14

3 MF-PJ(60) 820 590 1
MF-SGS(20) 860 617 1
NK(3) 185 2290 17

Table II. 2D sine-bump channel. Transonic case: M=0.6.

Mesh Method Iterations CPU RCPI

1 MF-PJ(30) 1210 130 0.9
MF-SGS(10) 940 115 1
NK(3) 75 160 17

2 MF-PJ(40) 1650 480 1.1
MF-SGS(10) 1160 300 1
NK(3) 190 1280 26

3 MF-PJ(60) 1100 785 1.5
MF-SGS(10) 1110 522 1
NK(3) 190 2815 31
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Table III. 2D sine-bump channel. Subsonic case: M=0.5.

Mesh Method Iterations CPU RCPI

1 MF-PJ(80) 410 184 1.4
MF-SGS(15) 420 136 1
NK(3) 65 158 7.5

2 MF-PJ(100) 480 604 0.97
MF-SGS(40) 480 624 1
NK(3) 90 714 6.1

3 MF-PJ(100) 650 1455 0.95
MF-SGS(40) 610 1432 1
NK(3) 75 1443 8.2

Table IV. 2D sine-bump channel. Low-Mach number case: M=0.1.

Mesh Method Iterations CPU RCPI

1 MF-PJ(80) 290 127 1.4
MF-SGS(20) 300 92 1
NK(3) 45 120 8.7

2 MF-PJ(100) 380 474 0.98
MF-SGS(40) 370 472 1
NK(3) 90 682 5.9

3 MF-PJ(120) 430 1120 1.15
MF-SGS(40) 430 970 1
NK(3) 65 1707 11.6

Table V. 2D sine-bump channel. Very low-Mach number case: M=10−4.

Mesh Method Iterations CPU RCPI

1 MF-PJ(80) 150 69 1.4
MF-SGS(20) 160 52 1
NK(3) 22 146 20

2 MF-PJ(100) 180 228 0.98
MF-SGS(40) 175 227 1
NK(3) 22 590 20

3 MF-PJ(120) 225 585 1.15
MF-SGS(40) 220 514 1
NK(3) EMR∗ — —

on a given grid as the ratio of CPU to Iterations, normalized by the cost per iteration of the
MF-SGS method, retained as reference. All the computations were performed using an Intel Xeon
3GHz processor with 2GB RAM Memory.
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This systematic comparison yields the following main conclusions:

• the Newton–Krylov approach is the fastest method in terms of iterations; in other words, it
provides the best intrinsic efficiency. However, with a cost per iteration much larger than
PJ-MF and SGS-MF (from 5.9 to 31 times larger than the cost per iteration for SGS-MF
depending on the grid refinement and inlet Mach number), the resulting global compu-
tational cost of this approach is always higher than the global cost of the matrix-free
schemes.

• the matrix-free schemes require a large amount of iterations to achieve convergence to steady
state and this amount increases as the grid becomes finer, a behavior that was forecast by a
local von Neumann analysis not presented here for the sake of conciseness. In order tomaintain
a good damping of the low-frequency error modes, it is necessary to increase the number of
inner iterations, especially for the Point-Jacobi algorithm. However, as the cost per iteration
of the matrix-free schemes are especially small, PJ-MF and SGS-MF remain globally more
efficient than their Newton–Krylov block counterpart.

• in the case of very low-Mach number flows, the NK approach displayed some lack of
robustness which made it necessary to increase the size of the ILUT preconditioner up to a
point where the NK solver could no longer be used on the available computer (hence the
EMR mention in Table V which stands for Exceeded Memory Requirements). Meanwhile, the
simplicity of the matrix-free methods allowed to perform fast simulations for all configurations
including the very low-Mach number one.

The behavior of the same three methods is now investigated on the 3D extension of the sine-bump
channel flow where the memory requirements will become as crucial an issue as the convergence
speed.

4.1.3. Description of the 3D case. This test-case is in fact a nominally 2D configuration—the one
treated in the previous paragraph—computed on three-dimensional grids in order to emphasize
the efficiency and robustness of the proposed matrix-free implicit treatment. The previous 2D
channel is now a xz section of a 3D channel extending from y=0 to 0.5. The initial and boundary
conditions remain the same with respect to the previous test case and need only to be completed
with symmetry boundary conditions along the plane y=0 and 0.5. Three grids made of six-face
prisms are used for computing the inviscid flow with M∞ =0.1: they contain, respectively, 34780
elements and 91428 faces for the coarse grid 118470 elements and 306323 faces for the medium
grid and 282080 elements and 723304 faces for the fine grid.

4.1.4. Numerical results for the 3D case. The convergence characteristics of PJ-MF(�), PJ-SGS(�)
and NK(�) when applied to this 3D low-Mach problem are summarized in Table VI. The most
striking feature is that the Newton–Krylov scheme is quickly limited because of its very demanding
memory requirements: in fact, the memory resources of regular computers such as the one used in
the study amount to 2GB of RAM memory, which is not sufficient to deal with more than 10000
elements in 3D. On the other hand, using matrix-free schemes on the same computer, it is possible
to compute flows in grids involving more than 592 350 elements. For this 3D test problem, the
very simple MF-PJ scheme turns out to be globally more efficient than MF-SGS: the intrinsic
efficiency of this latter approach is sensitive to the ordering of the grid cells; moreover, applying
SGS requires some knowledge of cell connectivity, which increases the cost per iteration. Note the
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Table VI. 3D sine-bump channel. Low-Mach number case: M=0.1

Mesh Method Iterations CPU RCPI

1 MF-PJ(80) 310 2570 0.88
MF-SGS(40) 340 3180 1
NK(3) EMR — —

2 MF-PJ(100) 410 15000 0.88
MF-SGS(50) 450 18800 1
NK(3) EMR — —

3 MF-PJ(120) 580 62400 1.08
MF-SGS(50) 630 62500 1
NK(3) EMR — —

L
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P
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P P
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Figure 4. Tee junction. H represents the inlet of the hot fluid, C of the cold one and O is the output.

simplicity of the MF-PJ method can also be exploited to implement the approach within a parallel
framework [30].

4.2. Numerical investigation of a tee junction

4.2.1. Introduction. The efficiency of the free-matrix algorithms is now assessed by computing
the steady and unsteady laminar air flow in a 2D tee junction, air being considered as a calorically
perfect gas. The mixing of a hot and cold fluid in a tee junction (see Figure 4 for a schematic view
of the configuration) has been the object of several investigations in the nuclear energy industry
(see, for instance, [31, 32]) for the following reasons.

In the region where hot and cold flow streams join, random fluctuations of the coolant temperature
can occur and cause cyclical thermal stresses (known as thermal stripping) with subsequent fatigue
cracking of the piping. Accidents linked to thermal stripping already occurred at some nuclear
power plants (Oskarshamn/Ringhals1/Barsabeck2 in Sweden, Tsuruga in Japan, Civaux in France),
which increased the interest for this phenomenon. As mentioned in [33], such accidents are
very complex to analyze since they involved several fields (thermal-hydraulics, heat transmission,
mechanics and material science) and the understanding of thermal stripping is beyond the purpose
of this article. From the pure viewpoint of numerical fluid mechanics, such low-speed flows

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:493–526
DOI: 10.1002/fld



516 T. KLOCZKO, C. CORRE AND A. BECCANTINI

are usually computed using asymptotic pressure-based methods specifically developed for this
purpose. Therefore, the flow configuration described in Figure 4 offers a significant test case to
assess the efficiency of the all-speed flow low-cost matrix-free approach developed in this work.
In what follows, the numerical results obtained using the newly proposed MF-SGS(�) approach
will be compared with reference results provided by an asymptotic pressure-based solver valid for
low Mach number flows only and described in [34], with the objective to demonstrate that the
all-purpose preconditioned matrix-free method represents an attractive alternative to an existing
technique limited to a specific flow regime. Both approaches will be, respectively, referred to as
asymptotic compressible and fully compressible and compared from the viewpoint of efficiency and
accuracy—the solution of the asymptotic compressible or pressure-based solver being considered as
reference.

4.2.2. Description of the steady problem. The flow in the tee junction admits a steady state for the
configuration described in Figure 4: the gas flows through the H(ot) inlet with a temperature TH
and a momentum mH and through the C(old) inlet with a temperature TC and a momentum mC .
The inlet temperatures are constant in space and time, while the inlet momenta follow a parabolic
distribution:

mH (s)= 6m̄H

d2

(
d2

4
−s2

)
, mC (s)= 6m̄C

d2

(
d2

4
−s2

)
where s is the distance with respect to the tube axis, m̄H and m̄C are the average momenta such that
m̄t = m̄H +m̄C . At the outlet 0, the pressure is constant (in space and time) and equal to P0 (plus
the hydrostatic component). The velocity is set to zero at the walls, which are impermeable and
adiabatic everywhere. The dynamic viscosity �0 and thermal diffusivity k0 are assumed constant
for the sake of simplicity.

It can be shown that the non-dimensional solution of this problem depends on the
following non-dimensional parameters: L1/d , L2/d and L3/d (with a limited influence in
the mixing region provided their values are large enough), the specific heat ratio �, the
Reynolds number Re= m̄td/�0, the Prandtl number Pr=(�0/�0)�/(�−1)R with R being the
gas constant, the Mach number M=((m̄t

2/�P2
0 )RT̄ )1/2 with T̄ = 1

2 (TC +TH ), the Froude
number Fr=(m̄t RT̄ /P0)21/gd where g is the gravity acceleration, the ratios �H = m̄H/m̄t and
=(TH −TC )/(TH +TC ). The steady problem under study is defined by the following set of
non-dimensional parameters:

L1/d L2/d L3/d �  �H Pr Re M Fr

12 9 7 1.4 0.2 0.8 0.7 100 1
300

1
9

This set of non-dimensional parameters can be completed with the following choice of numerical
values:

d=1m, �̄= P0
RT̄

=1kgm−3, m̄t =1kgm−2 s−1, R=288Jkg−1K−1
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which allows to compute all the dimensional quantities involved in the problem (SI units):

L1 L2 L3 P0 T̄ TH TC m̄H m̄C �0 �0

12 9 7 64 290 223.2 267.8 178.6 0.8 0.2 0.01 14.4

4.2.3. Numerical results for the steady case. In order to achieve grid convergence, three grids of
increasing refinement are used, containing, respectively, 12630, 22400 and 35000 elements. The
computations were run on a Pentium 4, 2GHz with 2Gbyte of RAM memory and a convergence of
10 orders on the numerical residual has been achieved in each case. The steady solution associated
with the data set defined in the previous paragraph and computed using the matrix-free solver
on the finest grid is presented in Figure 5. It can be deduced from these plots of streamlines
and temperature contours that the hot and the cold fluid do not mix: the heat transmission is
achieved through thermal diffusion only. Comparisons of the solutions provided by the asymptotic
solver and the preconditioned matrix-free method are presented in Figure 6 where the temperature
and velocity distributions along sections P22P23 and P22P32 of the tee junction are plotted (refer
Figure 4 for the location of these sections in the tee geometry). The fully compressible solver
makes use of a preconditioning parameter � designed for steady viscous flow (see Appendix for
more details). The solution of the preconditioned matrix-free solver is in excellent agreement
with the reference solution obtained using the asymptotic pressure-based solver. The main results
regarding the efficiency of both techniques are summarized in Table VII. The proposed fully
compressible approach based on a preconditioned matrix-free implicit scheme offers a very low
cost per iteration, more than 15 times lower than the unit cost of the asymptotic solver on the
finest grid. As a consequence, the resulting global cost of the preconditioned matrix-free method
is almost half that of the reference asymptotic solver on the fine grid.

Figure 5. Tee junction. Steady solution. Streamlines (top) and temperature isolines (bottom). There are
14 temperature isolines with a lowest value (cold leg, beginning of the mixing region) at T =182K and

a highest value (hot leg, beginning of the mixing region) at T =260K.
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Figure 6. Steady solution for the tee junction problem. From top to bottom: distribution of temperature
and velocity components (ux , uy) along sections P22P23 (left) and P22P32 (right),with s the curvilinear

abscissa along each section. All quantities are expressed in SI units.

4.2.4. Description of the unsteady case. Starting from the previously computed steady solution,
the boundary condition is modified for the inlet H. The momentum m̃H is left unchanged but the
temperature T̃H is now made time dependent:

T̃H (t)= T̃H (t̃=0)(1+A sin(�t̃))

where A and � denote, respectively, the amplitude and pulsation of the temperature fluctuation.
These parameters are chosen so as to yield significant temperature variations in the flow field
during one period: A=0.1 and �=0.1s−1. The corresponding evolution of the inlet temperature
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Table VII. Steady flow in the tee junction. Efficiency comparison for the asymptotic
pressure-based solver and the preconditioned matrix-free method.

Mesh Elements Method Iterations CPU RCPI

1 12 540 Asymptotic 180 4185 20.5
12 630 MF-SGS(15) 1050 1190 1

2 22 320 Asymptotic 220 7775 17.6
22 400 MF-SGS(15) 1380 2770 1

3 34 900 Asymptotic 260 13000 15.8
35 000 MF-SGS(15) 2200 6950 1

0 7.85 15.7 23.55 31.4 39.25 47.1 54.95 62.8
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Figure 7. Unsteady solution for the tee junction. Evolution of the temperature TH as a function of time.
All quantities are expressed in SI units.

TH over one period is plotted in Figure 7 where labels 1–9 associated with some particular points
of the cycle are also indicated for later reference.

4.2.5. Analysis of the unsteady solution. The temperatures isolines in the hot tube are displayed
in Figure 8 at different times ranging from t̃=7.85s to t̃=31.4s (respectively labels 2–5 on the
cycle presented in Figure 7): the fluctuations of temperature at the hot inlet are clearly observed
on these solutions obtained using the preconditioned matrix-free solver on the finest grid. The
effects of these variations are further investigated by focusing on the temperature and velocity
components distributions along section P23P33 plotted in Figure 9 for moments 1–5 of the inlet
cycle. At t̃=7.85s (label 2), a large variation of the velocity ũx is observed, whereas the fluid
elements coming from the hot inlet have not yet reached the section (cf. Figure 8 top-left frame).
In fact, as the inlet momentum m̃H remains constant in time, the inlet velocity varies with
temperature as

ũx,H = m̃H

P̃
RT̃H
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Figure 8. Unsteady solution for the tee junction computed using the preconditioned matrix-free
solver. Temperature isolines (K) in the hot tube at t̃=7.85s (top-left), t̃=15.7s (top-right),

t̃=23.55s (bottom-left) and t̃=31.4s (bottom-right).

Besides, according to asymptotic analysis, the velocity divergence is subjected to the following
condition:

∇̃ ·ũ= �−1

�P̃
∇̃·(�̃∇̃T̃ )

In the hot tube, that is between sections P23P33 and P24P34, the RHS of the above expression remains
small so that ∇̃ ·ũ≈0; this elliptic constraint is responsible for the fact that the variation of the inlet
velocity ũx,H immediately affects the speed ũx in section P23P33. Meanwhile, the temperature does
not exhibit a significant variation because, as mentioned earlier, the fluid elements arriving from the
hot inlet have not yet reached the section. Since the temperature remains almost constant while the
local velocity ũx increases, the local momentum in the section increases; thus, reducing the impact of
the cold fluid and diminishing the ũ y velocity component. Between t̃=7.85s (label 2) and t̃=15.7s
(label 3) the fluid elements coming from the hot inlet have reached section P23P33 (cf. Figure 8 top
right frame) so that the temperature variation becomes large. The temperature increase is higher in
the middle of the tube where the speed is the largest, i.e. where the convective heat exchanges are
the most important. The x and y velocity components have increased, with the increase of ũ y related
to the decrease of the momentum m̃x with respect to its value at t̃=7.85s and also to the increase
of the buoyancy force caused by the temperature increase. From t̃=15.7 to 23.6s (label 3 and 4 in
Figure 9), the velocity ũx decreases with time as expected. Nevertheless, because of the time delay
linked to the fluid transport, the temperature in the section is still increasing. From t̃=23.6 to 31.4 s,
the temperature decrease reaches its peak at the tube centerlinewhere the speed—hence the convective
heat exchange—ismaximum.Theflowbehavior at other instants is qualitatively the same, namely, the
ũx velocity component immediately follows the temperature variation at the hot inlet; the temperature
itself is perturbed with a delay due to convection, while the ũ y velocity component follows both
temperature and momentum variations.

4.2.6. Numerical results for the unsteady case. The flow under study is usually computed using
the pressure-based asymptotic solver with the non-linear system derived from the finite-element
space discretization and the second-order implicit time discretization solved using a Picard-type
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Figure 9. Unsteady solution for the tee junction. Evolution of temperature and velocity along section
P23P33; time labels 1–5 refer to the cycle depicted in Figure 7. All quantities are expressed in SI units.

fixed-point algorithm. The convergence criterion between two physical time levels is based on the
reduction of the temperature residual by five orders of magnitude during the iterative process. In
the present study, the flow is also computed using the proposed low-cost solver for all-speed flows
in a dual-time-stepping framework, with a second-order-accurate discretization of the physical
time derivative and the MF-SGS scheme retained for solving the implicit stage. For unsteady
flows governed by the particle wave speed, the CFL number based on that specific wave speed,
that is CFLu =u�t/�x , should be chosen of order unity (or less) to ensure an accurate descrip-
tion of the flow physics. However, larger values of this parameter are often retained in prac-
tice to achieve higher efficiency of the numerical approach. The optimal time steps, that is the
values offering the best trade-off between accuracy and efficiency, have been determined for both
schemes by successive trials and were taken equal to �t=(�/�)/N with N =80 for the asymptotic

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:493–526
DOI: 10.1002/fld



522 T. KLOCZKO, C. CORRE AND A. BECCANTINI

200 210 220 230 240 250 260 270 280 290 300

T

0

0.2

0.4

0.6

0.8

1

s

Asymptotic compressible
Fully compressible

200 210 220 230 240 250 260 270 280 290 300

T

0

0.2

0.4

0.6

0.8

1

s

Asymptotic compressible
Fully compressible

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
ux

0

0.2

0.4

0.6

0.8

1

s Asymptotic compressible
Fully compressible

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
ux

0

0.2

0.4

0.6

0.8

1

s Asymptotic compressible
Fully compressible

0 0.05 0.1 0.15 0.2 0.25 0.3
uy

0

0.2

0.4

0.6

0.8

1

s

Asymptotic compressible
Fully compressible

0 0.05 0.1 0.15 0.2 0.25 0.3
uy

0

0.2

0.4

0.6

0.8

1

s

Asymptotic compressible
Fully compressible

Figure 10. Tee junction. Non-stationary solution. Comparison between the pressure-based and the
density-based solvers. Temperature (top frames), ũx velocity (middle frames) and ũ y velocity (bottom
frames) are represented on section P23P33 and for the following time levels: t̃=15.7 and 31.4s. All

quantities are expressed in SI units.

pressure-based solver and N =160 for the preconditioned scheme. Furthermore, concerning this
latter approach only, a preconditioning parameter � designed for unsteady viscous flows has been
used (see Appendix for its description).

The evolutions of the temperature and the velocity along the section P23P33 displayed in
Figures 10 and 11 for both approaches demonstrate that the all-speed compressible flow solver
provides a solution as accurate as the one obtained using the asymptotic pressure-based solver
specifically devoted to such unsteady low-Mach number flows. Regarding efficiency, the main
features of the fine grid computations performed on an Intel Xeon 3GHz with 2GM Ram memory
are summarized in Table VIII: a 35% increase of the total CPU cost is observed when using the
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Figure 11. Tee junction. Non-stationary solution. Comparison between the pressure-based and the
density-based solvers. Temperature (top frames), ũx velocity (middle frames) and ũ y velocity (bottom
frames) are represented on section P23P33 and for the following time levels: t̃=47.1 and 62.8s. All

quantities are expressed in SI units.

Table VIII. Unsteady flow in the tee junction. Global cost of the pressure-based
asymptotic solver and the preconditioned compressible solver.

Mesh Elements Method CPU

3 34 900 Asymptotic 27 000
35 000 MF-SGS(30) 36 500
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general-purpose preconditioned solver. This loss of performance in the unsteady case is related to
the difficulty of setting an appropriate value for the preconditioning parameter when computing
low-Mach unsteady flows, as already pointed out in [7].

5. CONCLUSION AND PERSPECTIVES

The development of low-Mach preconditioning techniques has made possible the application of
fully compressible or density-based solvers to the computation of flows at all speeds, from the
supersonic down to the nearly incompressible regime. Such general-purpose tools are particu-
larly useful when computing flows of interest for the nuclear industry: for instance, hydrogen
safety studies require the simulation of hydrogen combustion which gives rise to very weakly
compressible flows when a slow deflagration takes place or for a case of flame diffusion but
also to highly compressible phenomena when a denotation occurs. The method developed in the
present study allows to combine the flexibility offered by low-Mach preconditioning with the very
low-cost of a matrix-free implicit scheme. Taking advantage of some specific properties of the
commonly used Turkel low-Mach preconditioning matrix, it was possible to derive a low-cost
implicit scheme for all-speed flows. The efficiency of the scheme with respect to an existing block
implicit preconditioned solver, with a better intrinsic efficiency but also a higher cost per iteration,
was demonstrated on the standard test case of a steady inviscid flow in a 2D and 3D channel; the
reduced memory requirements of the approach were also pointed out. The all-speed scheme was
eventually compared with an existing pressure-based solver specifically devoted to the analysis of
low-Mach flows of interest for the nuclear industry. When computing the steady laminar flow in
a tee-junction, the new approach was found competitive with respect to the standard tool since
it offered the same solution accuracy for a reduced computational time, thanks to its very low
unit cost. However, in the case of unsteady flow, the all-speed treatment provided an accurate
solution but for a cost higher than the existing pressure-based method. The key reason of this
behavior is found in the difficulty to set a preconditioning parameter that simultaneously ensures
fast convergence to steady state for the dual-time-stepping process and a proper scaling of the
numerical dissipation that yields an accurate solution. The next step of this work will be therefore
to develop a separate strategy for the preconditioning formulation used for the time derivative,
responsible for convergence efficiency, and that used for the artificial dissipation terms, responsible
for accuracy; such a formulation will be implemented within a multiple pseudo-time framework
as recently discussed in [35].

APPENDIX A: CHOICE OF PRECONDITIONING PARAMETER

The preconditioning parameter � is chosen such that the eigenvalues of the preconditioned system
keep the same order of magnitude when the Mach number becomes small. The following definitions
have been used for the computations presented in the paper.

A.1. Inviscid steady flow

The original definition proposed by Turkel [18] has been used:

�=min(max(M,M∞),1) (A1)
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where M is the local Mach number and M∞ denotes the reference Mach number (inflow Mach
number for external flows or maximum Mach number within the field for internal flows).

A.2. Viscous steady flow

The previous definition fails to ensure a correct efficiency for viscous steady flows. In that case, it
is necessary to redefine the preconditioning parameter; the efficiency-preserving choice proposed
by Venkateswaran and Merkle [36] is adopted:

�=min(max(M,�v),1) with �v = �·�x
�·c (A2)

where � is the local dynamic viscosity, � is the density and c is the local speed of sound.

A.2.1. Viscous unsteady flow. The previous definition does not provide fast convergence to a
pseudo-time steady state when viscous unsteady flows are computed. An alternative expression
for the preconditioning parameter was thus given by Venkateswaran and Merkle [36]:

�=min(max(M,�v,�u),1) with �u = lref
�·�t ·c (A3)

where the length lref is usually taken as the length of the computational domain. However, as
pointed out in [7], such a definition may prevent a proper scaling of the numerical dissipation and
lead to inaccurate solutions. The following strategy was thus adopted for the unsteady computations
presented in this paper: a large cut-off value was first set at the beginning of the dual-time-stepping
process using (A3), then this value was progressively reduced throughout the dual-time convergence
process until reaching a value of the order of the Mach number, corresponding to (A2). Such a
choice allowed to recover an accurate solution but at the expense of a poorer efficiency.
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34. Paillère H, Quéré PL, Weisman C, Vierendeels J, Dick E, Braack M, Dabbene F, Beccantini A, Studer E,
Kloczko T, Corre C, Heuveline V, Darbandi M, Hosseinizadeh S. Modelling of natural convection flows with
large temperature differences: a benchmark problem for low Mach number solvers. Part 2: contributions to the
June 2004 Conference. ENSAIM: Mathematical Modelling and Numerical Analysis 2005; 39:617–621.

35. Venkateswaran S, Merkle C, Zeng X, Li D. Influence of large scale pressure changes on preconditioned solutions
at low speeds. AIAA Journal 2004; 42:2490–2498.

36. Venkateswaran S, Merkle C. Analysis of preconditioning methods for Euler and Navier–Stokes equation. Technical
Report 1999-03, VKI Lecture Series, 1999.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:493–526
DOI: 10.1002/fld


